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S1. Introduction 
 

This supplementary material comprises the (Knowing Earth) Standard Legend for Palaeogeography 

(Version 1) which is used throughout the accompanying paper to help visualise the representation of 

each stage of the palaeogeographic mapping workflow. This legend is provided in full as a resource to 

the geoscience community in order to facilitate communication and collaboration. The aim is that 

through the workflow and mapping legend this paper will help promote a standard approach to 

palaeogeographic mapping and encourage the greater application of palaeogeography in Academia and 

Industry.  

 

Some text has been extracted from the main paper and added to this supplemental material where needed 

to ensure that the legend can be used as a standalone document. Citation should be to the main paper. 

 

This legend (Version 1) is also available digitally as an ESRI ArcGIS style file that can be downloaded 

from the Knowing Earth website (www.knowing.earth) and www.palaeogeography.net.  

 

 

S2. Formats and attribution 
 

Each database used in the palaeogeography workflow comprises an extensive attribution that provides 

an audit trail for each feature, semi-quantitative assessment of confidence and referencing. This follows 

the methodologies outlined in Ziegler et al., (1985), Markwick and Lupia (2001), Markwick (1996). 

 

A symbol code is used to link the feature in each database to the relevant symbol. This comprises a text 

field of 6 characters in the GIS attribute table. The name of this field is not set; in ArcGIS (ESRI, 2017), 

the user will be asked what field contains the symbol code. This is the code that is shown above or next 

to each symbol in this document. Each symbol code comprises a letter(s) that indicates the type of 

feature, as follows: S, structural and tectonic element; TP, transport direction; GM, geomorphological 

feature; C, crustal type; T, thermo-mechanical state; E, depositional environment; L, lithology; IG, 

igneous feature. This is followed by a numerical code: for structural and tectonic elements, except 

lineaments, bedding and foliation, the first number will be the class of structure; for the thermo-

mechanical state, the last digit relates to the age range for that feature relative to the map age (see Fig. 

S18). At the end of the code, there may be a qualifier as to the state of that feature. For structural and 

tectonic elements this qualifier comprises the following: A, active; Ai, active inferred; I, inactive; Ii, 

inactive inferred. For lithologies this qualifier relates to whether the lithology represents the following: 

o, outcrop; s, subcrop; i, inferred. 

  

http://www.knowing.earth/
http://www.palaeogeography.net/
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S3. Structural and tectonic elements 
 

The map representation of structural and tectonic elements is relatively standard around the world. Here 

the legend largely follows that of the USGS, with modifications where there are no corresponding 

symbols or to avoid confusion. Colours and symbol weights are used to differentiate feature class, 

activity and mapping confidence. These are explained below.  

 

S3.a. Class 
In this legend, structural and tectonic features are classified according to their influence on the crust 

and stratigraphy using different line weighting for each. This is through what is referred to here as 

‘classes’ of features and has been done in order to facilitate clarity on the maps when high densities of 

features are presented (Fig. S1). 

• Class 1 – ‘crustal scale - features cut through the crust and (may) offset the base of the crust, 

e.g. major shear zones and sutures 

• Class 2 – ‘basement scale’ - features cut into the basement (upper levels of crust). Includes 

thick-skinned tectonics, e.g. thrusts in the anticlinal stack of the Pyrenean Axial Zone or rift 

bounding faults, major basin bounding faults 

• Class 3 – ‘local basement scale’ - features cut into lithified stratigraphy, above regional 

basement (usually the Precambrian). This includes thin-skinned tectonic features, e.g. thrusts 

defining allochthonous thrust sheets in the central Pyrenees. 

• Class 4 – ‘sedimentary scale’ - features that cut the sedimentary pile only, e.g. toe thrusts in 

pro-deltas such as the Niger Delta. 

There is a separate code for lineaments, which are not divided by class. Lineaments are defined as linear 

features identified in the Earth, but where both the kinematics and nature are unknown. 

 

S3.b. Activity 
Tectonic and structural elements are attributed as ‘active’ or ‘inactive’ depending on whether there is 

evidence of displacement or deformation at the time of the map on which they are displayed (Fig. S1.). 

The default in the author’s own databases is the activity at the present day, constrained by seismicity or 

published evidence of motion. This is then linked to an activation history table, which records the 

kinematic evolution through time. The convention adopted here is to show active faults in red and 

inactive faults in black. 

 

S3.c. Defined or inferred?  
The underlying database includes a field for whether the field is ‘Defined’ or ‘Inferred’ (Fig. S1). This 

is shown symbolically using colour shading and a dashed line for ‘inferred’ versions of features: 

• ‘Defined’ – features that are based on a signal in primary data. This can include Landsat 

imagery, where the structural nature is clear-cut (folded bedding, fault with offsets or scarp), 

seismic sections, satellite gravity data, high-resolution station-based gravity and aeromagnetic 

data (where the interpretation is unequivocal); features supported by observational data and/or 

evidence of motion (GPS, seismicity).  

• ‘Inferred’ – features that are required to exist to satisfy a model, but for which there is no clear 

evidence from any input dataset; features for which there is some evidence, but where that the 

input data is either of poor resolution or relationship is unclear (e.g. low-resolution gravity data 

onshore) 

The ‘confidence’ in the position and interpretation is dealt with in the associated database attribution. 
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Figure S1. Structures are classified according to their effect on the crust (class). This is designed to provide graphical depth 

and facilitate queries of the underlying database. (a) Examples of each class of structural feature in a typical compressional 

system. (b) Examples of each class in an extensional system. (c) An example of the attribution of structural features (normal 

faults in this case but applies to all kinematic types) to reflect activity at the time of the map and mapping confidence. ‘Defined’: 

evidence from at least one primary source. ‘Inferred’: required by the kinematics of the area, but not clearly seen in the data. 

Line weighting is used to differentiate the fault class, which is a visual representation of the scale effect of each feature on the 

crust. 
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S3.d. Tectonic elements 
Comprise crustal-scale features that define plate boundaries or crustal-scale folds (commonly referred 

to in the literature as ‘arches’) (Fig. S2.). 

 

 

 

 

Figure S2. Tectonic symbols with their associated symbol codes used in the structural elements databases.   
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S3.e. Normal and reverse faults 
 

 

 

 

Figure S3. Normal and reverse fault symbols with their associated symbol codes used in the structural elements databases.   
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S3.f. Strike-slip faults 
 

 

 

Figure S4. Strike-slip fault symbols with their associated symbol codes used in the structural elements databases. The 

undifferentiated strike-slip line graphic is the same as that for an undifferentiated fault, but the code is different.  
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S3.g. Transpressional and transtensional faults 
 

 

Figure S5. Transtensional and transpressional fault symbols with their associated symbol codes used in the structural 

elements databases.   
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S3.h. Undifferentiated folds 
 

 

Figure S6. Undifferentiated fold symbols with their associated symbol codes used in the structural elements databases. This is 

especially useful for interpretations based on remote sensing data, such as Landsat, where the age relationships of the beds 

are not known, and the bedding dip direction is unclear.  
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S3.i. Anticlines and antiforms 
 

 

Figure S7. Fold symbols with their associated symbol codes for anticlines and antiforms used in the structural elements 

databases.   
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S3.j. Synclines and synforms 
 

 

Figure S8. Fold symbols with their associated symbol codes, for synclines and synforms used in the structural elements 

databases.   
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S3.k. Inverted and over-turned folds 
 

 

Figure S9. Fold symbols with their associated symbol codes for overturned and inverted folds used in the structural elements 

databases. 
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S3.l. Lineaments, bedding and foliations 
 

 

Figure S10. Line symbols with their associated symbol codes for lineaments, bedding and foliations used in the structural 

elements databases.   
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S4. Sedimentary and geomorphological features 
 

The current symbols in this category comprise features that either describe transport direction or the 

status of the palaeo-shoreline. 

 

 

 

Figure S11. Line symbols with their associated symbol codes, for sedimentary and geomorphological features used in 

(palaeo)drainage analysis and palaeogeographic mapping. 
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S5. Crustal type 
 

The crustal type databases are divided into those representing observational and process-based 

classifications. Although definitions of ‘true’ or ‘normal’ ocean crust (Fig. S12), and ‘normal’, 

unstretched continental crust (Fig. S15), are largely uncontroversial, the ‘real-estate’ that lies in between 

is more problematic. The scheme presented here differentiates between ‘stretched (attenuated) 

continental crust’ (Fig. S14) and a zone of ‘transitional’ crust (Fig. S13), the latter including a variety 

of sub-types and which encompasses the zone formerly referred to as the Continent-Ocean Boundary 

(COB), but which is now recognized as a ‘transitional’ zone rather than a distinct boundary. A category 

for the thickened continental crust (Fig. S16) has been added that includes crust thickened due to 

continent-continent (e.g. Alps, Himalayas, Tibetan Plateau) and continent-ocean (e.g. continental arcs) 

collisions.  

 

The classification of process-based crustal types (Fig. S17) follows that of Péron-Pinvidic and 

Manatschal (Manatschal, 2012; Péron-Pinvidic and Manatschal, 2010). 
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S5.a. Oceanic crustal types 
 

 

Figure S12. Fill colours with their associated symbol codes, for differentiating oceanic crustal types, used in building the 

crustal architecture databases that underpin the palaeogeographic mapping. 

 

 

 

S5.b. Transitional crustal types 
 

 

Figure S13. Fill colours with their associated symbol codes, for differentiating ‘transitional’ crustal types, used in building 

the crustal architecture databases that underpin the palaeogeographic mapping. 
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S5.c. Stretched (attenuated) continental crustal types 
 

 

Figure S14. Fill colours and symbols, with their associated symbol codes, for differentiating ‘stretched’ (attenuated) crustal 

types used in building the crustal architecture databases that underpin the palaeogeographic mapping. 

 

 

 

S5.d. Unstretched continental crustal types 
 

 

 

Figure S15. Fill colours with their associated symbol codes for differentiating ‘unstretched’ continental crustal types, which 

are used in building the crustal architecture databases that underpin the palaeogeographic mapping. 
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S5.e. Additive continental crustal types 
 

 

Figure S16. Fill colours with their associated symbol codes for differentiating ‘additive’ continental crustal types (those for 

which crust has been added to generate thickened crust), which are used in building the crustal architecture databases that 

underpin the palaeogeographic mapping. 

 

 

S5.f. Crustal processes 
 

 

Figure S17. Fill colours with their associated symbol codes for differentiating crustal processes using the definitions presented 

in  Péron-Pinvidic and Manatschal (Manatschal, 2012; Péron-Pinvidic and Manatschal, 2010). 

 



Supplementary Material: Palaeogeography in Exploration, Markwick 20 

S6. Geodynamics (thermo-mechanical history) 
 

Crustal type dictates first-order heat flow and elevation, but the key for palaeogeographic reconstruction 

is how geodynamics then acts on this crust. This process is represented by mapping the age and nature 

of the last thermo-mechanical event with respect to the palaeogeographic timeslice being reconstructed. 

This method was first discussed in Markwick and Valdes as tectonophysiography (Markwick and 

Valdes, 2004) with regards to defining areas above contemporary base-level and therefore areas of net 

erosion (sediment source areas in source-to-sink analysis). The age of the last thermo-mechanical event 

was added to better represent the decay of landscapes (Campanile et al., 2007; Pazzaglia, 2003; Tucker 

and Slingerland, 1994; Van der Beek and Braun, 1998; Whipple and Meade, 2004) following the ideas 

presented in the 1997 USGS thermo-tectonic age map of the world that was used to model heat-flow 

following Pollack et al.,(1993) and crustal thickness and structure (Mooney, Laske and Masters, 1998). 

An updated scheme for tectonophysiographic terrains was then presented by Markwick and co-workers 

in several presentations (Galsworthy et al., 2011; Markwick, Wilson and Lefterov, 2008; Markwick, 

2011; Markwick, Galsworthy and Raynham, 2015; Raddadi, Markwick and Hill, 2010). The latest 

version is shown in Figure S18. 
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Figure S18. Fill colours and patterns with their associated symbol codes for differentiating the thermo-mechanical state of the 

crust, which is used to define the dynamics of the landscapes reconstructed as part of the palaeogeographic mapping. 
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S7. Depositional Environments 
 

The mapped depositional environment in this workflow represents the full extent of each environment 

at the time of the palaeogeography. This extent represents areas below contemporary base-level and 

potentially able to accumulate sediments (Markwick and Valdes, 2004), but will also include areas with 

no deposition due to by-passing. Base-level and depositional environments can vary rapidly in time and 

space, especially in tectonically active areas, and this must be considered.  Strictly speaking, 

depositional environment maps are distinct from a facies map, the latter representing the products of 

deposition (the rock record). A palaeogeography in this definition would show a submarine canyon 

system, slope, rise and abyssal plain as environments, but not refer to a ‘turbidite’ depositional 

environment, which is a facies. With digital systems, these can be kept separate and overlain later during 

analysis. In reality, many published palaeogeographies ‘mix’ facies, gross depositional environments 

(GDEs) and depositional environments and users should be aware of this.  

 

Most symbology schemes for depositional environments are relatively standard, if not always self-

explanatory, for example, the use of yellow polygon fill to denote delta tops has been used by numerous 

authors (Golonka, Ross and Scotese, 1994; Markwick, 2011). Most mappers use various shades of blue 

to represent marine conditions (Markwick and Valdes, 2004; Vinogradov, Grossheim and Khain, 1967; 

Vinogradov, 1968; Vinogradov, Vereschchagin and Ronov, 1968; Vinogradov, 1969; Ziegler et al., 

1985), except for Ziegler (1990). There are numerous published schemes now available including those 

of Shell (Hulshof, 2012) and the USGS (Federal Geographic Data Committee, 2006).  
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S7.a. Terrestrial depositional environments 
Terrestrial environments have been divided into fluvial, lacustrine, glacial and desert environments 

(Figs. S19, S20). Subdivisions to allow differentiation between meandering and braided fluvial systems, 

different lacustrine types (based on salinity) and alluvial as distinct from fluvial systems, have been 

included given the needs of source-to-sink analysis and climate modelling. 

 

 

 

Figure S19. Fill colours with their associated symbol codes for differentiating terrestrial depositional areas. 
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Figure S20. Fill colours with their associated symbol codes for differentiating desert- and ice-related depositional 

environments. The use of ‘desert’ in this context does not differentiate between ‘hot’ and ‘cold’ deserts, although in most 

applications the sedimentary indicators are more typical of ‘hot’ deserts, viz. sand seas. 
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S7.b. Coastal depositional environments 
For coastal and near-shore environments (Fig. S21) this legend follows the definitions in Boyd et al. 

(1992) (Fig. S22) given the importance of such environments to reservoir systems (Armentrout, 2000). 

Delta tops also fall into the group of coastal or near-shore environments (Fig. S21).  

 

 

Figure S21. Fill colours with their associated symbol codes for differentiating terrestrial depositional areas. 

 



Supplementary Material: Palaeogeography in Exploration, Markwick 26 

 

 

Figure S22. The symbol set defined in this paper applied to a modified version of the coastal and near-shore environments 

classification of Boyd et al., (1992). 
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S7.c. Marine depositional environments 
Marine environments are generally classified by depth following Ziegler et al. (Table 2 in Ziegler et 

al., 1985), who related environments to sedimentological and fossil evidence. Similar definitions were 

used by Vinogradov et al. (1967; 1968; 1968; 1969) and adopted to lesser or greater degrees by Scotese 

(1992; 2014a; 2014b), Golonka (1994; 2011), Ziegler (1982; 1990), Markwick (2000; 2004; 2007; 

2011; 2015), and most other palaeogeographers.  

 

 

Figure S23. Fill colours with their associated symbol codes for differentiating marine depositional environments. The 

bathymetric definitions are those of Ziegler et al. (1985).  
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S8. Lithologies 
 

Lithologies, like depositional environments, can change rapidly spatially and temporally in response to 

changing accommodation space. In most palaeogeographic reconstructions the ‘dominant’ lithology of 

the depositional environment is usually represented, which can miss key lithologies of interest. 

Lithological qualifiers can be used on the maps to show key lithological detail if needed, such as the 

presence of thin coal layers or evaporites used to constrain model results or the presence of thin, coarse 

sand units in turbidite systems that are critical for understanding reservoir potential. Alternatively, 

additional higher resolution depositional and lithological maps need to be drawn.  

 

In this scheme, all lithological symbol codes are prefixed with an “L” and then a suffix is added to 

differentiate between lithologies based on “o” outcrop data, “s” subcrop data, or is “i” inferred. The 

default symbology has no suffix. 

 

The graphical representation of lithologies is relatively standardized. The symbologies used here largely 

follow those of the USGS and reports of the deep-sea drilling projects (DSDP, ODP and IODP). 

Following Vinogradov et al. (1967; 1968; 1968; 1969) the lithological symbology is also used to show 

data confidence and coverage (Fig. S24). 

 

 

 

 

Figure S24. The use of fill patterns to show different levels of mapping confidence based on the mapping methods of 

Vinogradov et al. (1967; 1968; 1968; 1969). Increasing mapping confidence is indicated by the addition of lithological 

symbology using different line colours.   
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S8.a. Clastics 
 

 

Figure S25. Fill colours and patterns with their associated symbol codes for differentiating clastic lithologies.    



Supplementary Material: Palaeogeography in Exploration, Markwick 30 

S8.b. Carbonates 
 

 

Figure S26. Fill colours and patterns with their associated symbol codes for differentiating carbonate lithologies.    
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S8.c. Interbedded units and non-deposition 
 

 

 

Figure S27. Fill colours and patterns with their associated symbol codes for differentiating interbedded lithologies. This is 

not an exhaustive list but captures the most common. Non-deposition is an important qualifier in palaeogeography since it 

indicates an area below base-level, but with no record.  
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S8.d. Oozes 
 

 

Figure S28. Fill colours and patterns with their associated symbol codes for differentiating deep sea ‘ooze’ lithologies, based 

on the most common symbology’s used in the reports of the Deep Sea Drilling Program (DSDP), Ocean Drilling Program 

(ODP), International Ocean Drilling Program (IODP).    
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S8.e. Chemical lithologies 
 

 

 

Figure S29. Fill colours and patterns with their associated symbol codes for differentiating chemically formed lithologies.  
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S8.f. Igneous and Igneous-related 
 

 

 

Figure S30. Fill colours and patterns with their associated symbol codes for differentiating igneous and igneous related 

petrologies and lithologies.  
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Figure S31. Fill and line colours and patterns with their associated symbol codes for differentiating igneous features. The 

use of lines rather than polygons is a function of mapping scale. For most palaeogeographic purposes, with the exception of 

large-scale dykes (dikes) such as that Great Dyke in Zimbabwe most dykes (dikes) will be shown by lines.  
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S8.g. Metamorphic 
 

 

 

Figure S32. Fill and patterns with their associated symbol codes for differentiating the major metamorphic features.   
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